If it's not what You are looking for type in the equation solver your own equation and let us solve it.
33x^2+x=0
a = 33; b = 1; c = 0;
Δ = b2-4ac
Δ = 12-4·33·0
Δ = 1
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1}=1$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-1}{2*33}=\frac{-2}{66} =-1/33 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+1}{2*33}=\frac{0}{66} =0 $
| 4x-80-60-60=180 | | 5/8k=4/9 | | 60-60-4x-80=180 | | 8(x+2)=54 | | 5/6k=45 | | −2=67/p | | 5(2x+4)=-4(x+5)+6x | | 8/5k=33 | | 4|p−3|=|2p+8 | | 2x^2−8x+3=0 | | h-4.8=9.2 | | 10-15-10x=5(-3x+9) | | 2x2−8x+3=0 | | 7-4d=11 | | -9x-10=-3x+14 | | r+20=43 | | -5(x+3)=5X-55 | | -3(x-8)=7x | | -5(x+3)=-5X-55 | | 14.7+0.447m=32.5 | | 12-x=81 | | (3x-5)+(x-1)=6x-27 | | (3x-5)+(x-1)=6x-37 | | 0.3m=0.49(m+7) | | 0.3m=0.49m+7) | | 13q-9.3q+1.4=-54.6 | | -7-4(1+x)=7(3x+2) | | (4x-20)+19=6x-35 | | -(5/3)v+5/4=-2v-(7/4) | | 1/x+4/x-9=0 | | 5/4(y)-1/3=1/2(3y-1) | | (6x+1)+(x+7)=36 |